Highly efficient perovskite LEDs

Metal halide perovskite nanocrystals (PNC)-based light-emitting diodes with the world’s highest external quantum efficiency (23.4%) and current efficiency (108 cd A-1) has been reported in a research made in an international collaboration with other groups from the Republic of Korea, USA, China and UK.
This is the highest device efficiency among perovskite LEDs reported so far and is comparable with even the highest current efficiencies of conventional III–V and II–VI inorganic quantum dot LEDs.
This achievement was obtained by the development of a comprehensive strategy that makes it possible to simultaneously decrease the non-radiative charge recombination by comprehensive defect suppression and bulk entropy stabilization, and increase the radiative recombination of charge carriers due to increased excitonic confinement.
A beautiful illustration of this research on perovskite light-emitting diodes made the cover of the February 2021 issue of Nature Photonics.

The original article can be accessed in: https://doi.org/10.1038/s41566-020-00732-4
Kim, Y. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148-155 (2021)

It was also highlighted in: https://www.nature.com/articles/s41578-021-00280-5
Highlighted in Nature Reviews Materials “Highly efficient perovskite LEDs” 6, 108 (2021)

Daniel Pérez achieved one of the Excellent Talk awards at the 2020 MRS Fall Meeting

Our PhD student Daniel Pérez del Rey won one of the Excellent Talk awards from Symposium CT02-EL08 at the 2020 Virtual MRS Fall Meeting & Exhibit, this year exceptionally held online.
This award recognized the excellent presentation Daniel made at the conference with the contributed talk: “Interfacial Engineering in High Efficiency Vacuum Deposited Perovskite Solar Cells – From Metal Oxide Extraction Layers to Large Area Devices



Hendrik J.Bolink receives an ERC Advanced Grant

Dr. Bolink, was granted in 2019 with 2.5 million euros from- the Advanced Grant of the European Research Council (ERC).
The project named ‘Hetero-structures for Efficient Luminescent Devices’ (HELD) plans to engineer stable, highly luminescent heterostructures based on defect-tolerant perovskites and integrate them into thin-film optoelectronic devices. The primary targeted devices are blue and white planar electroluminescent devices, high-efficiency solar cells and electrically pumped lasers. The project will use processing methods that are compatible with large-area industrial processes.

More information can be found HERE.

Breakthrough in vacuum-deposition Perovskites

In a recent work, Dr. Bolink and co-workers reported on an innovative multiple-source thermal vacuum deposition technology for growing mixed-cation/mixed-halide perovskite layers. Among all the possible composition combinations, a three-cation/two-anion perovskite (Cs0.5FA0.4MA0.1Pb(I0.83Br0.17)3) was shown to yield the most efficient and stable perovskite solar cell (PSC).

The original article can be accessed in: https://doi.org/10.1002/aenm.201703506
L. Gil-Escrig, C. Momblona, M.-G. La-Placa; P. P. Boix; M. Sessolo; H. J. Bolink. Vacuum Deposited Triple-Cation Mixed-Halide Perovskite Solar Cells Adv. Energy Mater., 8, 14, 1703506 (2018).

It was also highlighted in Advanced Science News: https://www.advancedsciencenews.com/vapor-deposition-technology-for-mixed-hybrid-perovskites/